

UV LEDs: A Measurement Update

Joe May, Jim Raymont, and Mark Lawrence May 2016

INSTRUMENT MARKETS

- 1. Measurement Fundamentals/Variables
- 2. UV LEDs
- 3. Measurement of UV LEDs

Why is UV Measurement Important?

Communication:

•Between stakeholders (equipment, chemistry, end users, substrate, same company with multiple locations)

- •Wide range of technical knowledge (chemists, suppliers, users)
- Repeat tests and experiments across multiple facilities
- Transfer production and processes
- Troubleshoot applications
- Speak the same language
- Understand differences between instruments

Bottom Line:

Measurement saves time and money

Broadband UV Sources

Arc Lamps

Microwave Lamps

Images Courtesy: Dymax, Heraeus, Miltec, Nordson Corporation

Broadband Spectral Output

The traditional approach has been to define the band response based ONLY on the filter response

UV Measurement Strategies

1. Radiometers

- Absolute units
- Want a "number"

3. Spectral Radiometer

- Profile of UV irradiance as a function of bandwidth
- R&D vs. Production

2. Profiling Radiometers

- Measure the peak irradiance and total energy density
- X-Axis: Time / Y-Axis: Irradiance

4. Relative Instruments

- Signal proportional to lamp brightness (%)
- Sensor & Display
- Continuous feedback & monitoring of UV conditions

Challenges Measuring Broadband UV Sources

Past efforts to improve & understand UV measurement:

- 3M, Heraeus, International Light, EIT
- RadTech Measurement CD
- Educate & Communicate

Challenges Measuring Broadband UV Sources

Why are there differences between instruments?

Optics

- Different Bands/Manufacturers
- Define response by 10% Power Point or 50% Power Point (FWHM)

Calibration Sources/Points

 One source type does not always fit

Data Collection Techniques

User Errors

Electronics

- Dynamic range
- Sampling rates
- RMS vs Instantaneous Watts
- Threshold Differences

User Expectations

• Fraction of a percent?

UV Measurement Challenges

Instrument Cleanliness

Irradiance W/cm ²				
Band	Before	After	Difference	
UVA	1223	983	-19.6%	
UVB	1066	888	-16.7%	
UVC	277	257	-7.2%	
UVV	889	757	-14.9%	

Energy Density J/cm²

			-
Band	Before	After	Difference
UVA	349	282	-19.2%
UVB	284	239	-15.9%
UVC	75	68	-9.33%
UVV	309	264	-14.6%

Data collected 3/24/16

Before: Data collected with contaminated optics

After: Data collected after cleaning

UV LEDs

Wide variety of UV LED sources

- Multiple suppliers with wide level of expertise, support, finances
 - More than someone with SMT equipment?
- Experience in industrial UV, visible lighting, semiconductor industry?
- Ties to formulators?
- Match source to your application & process
- Economics of source selected (ROI)

Images courtesy Baldwin, Dymax, Integration Technology, Excelitas & Phoseon Technology

UV LED Power Output vs. Wavelength

UV LEDs: Measurement

What do you want to measure?

- What do you want to measure?
 - Individual LED
 - Array
 - Production system
- What values do you want?
- Industrial UV: W/cm² & J/Cm²
- Visible LEDs: Flux?/Color?

UV LEDs: Measurement

Where do you measure?

- Where is the proper location for the UV Irradiance Value?
- How do we compare systems and communicate values?

Is the instrument response matched to the source?

Measurement of 395 nm LED

Using UVA to measure a 385 nm or 395 nm LED

Wavelength (nm)

NIST comparison of high power UV LED sources

- Study completed by Dr. Robert F. Berg, NIST
- Looked at three LED units with two different radiometers
- No surprise there were differences
- CORM Meeting at NIST on May 18th
- Path forward?

EIT UVA2 Bandwidth Response

UVA2 Overall Optic Response

Added UVA2 (380-410 nm)

UV LED Emission Spectra

395 nm LED array output measured on a spectral radiometer Courtesy EIT

Proposed "L" Bands

Broadband Source Ranges

Band Name Identifier	Approximate Wavelength Range	
UVA	315-400nm	
UVB	280-315nm	
UVC	240-280nm	
UVV	400-450nm	

Proposed "L" LED Bands

EIT Band	Wavelengths, Cp	Measurement Range
L405	400-410nm	380-430 nm
L395	390-400nm	370-420 nm
L385	380-390nm	360-410 nm
L365	360-370nm	340-390nm

Proposed UV L395 nm Band

- "Wide" (+/- 100 nm) vs.
 "Narrow" (+/- 50 nm) Approach
- Advantages & Disadvantages to each approach
- Goal: Flat Response

L395 LED Output Spectra Showing <u>+</u> 5nm Spread of Cp Along with Required Filter Response to Obtain 2% Measurement

Total Instrument Response

- Control of overall optics to flatten OVERALL response of instrument
- ALL Optical Components
 NOT just the filter

Total Measured Optics Response

Total Measured Optics Response

LED-R[™] Series

LEDCure™ Profiling Radiometer

•40 Watt Dynamic Range
•Display Plus Profiler Option
•L395 Total Optics Response
•Additional L-Bands coming soon

Calibration Challenges

- Industrial LED sources have exceeded 50W/cm²
- Typical irradiance levels, sources and standards that NIST has worked with are much lower (mW/cm²-µW/cm²)
- Reduce variation and errors introduced in transfer process
 - Fixtures
 - Direct evaluation of EIT master unit by NIST from 220 nm past visible region
- Uniformity of UV LED source used with working standard and unit under test

Instrument Features for LEDs

Desired Instruments Features

- •Cover LED Source and natural variations
- •High dynamic range
- •Easy to use
- •Cosine response
- •Stable method of value transfer/ calibration
- •Other: TBD

Thank You.

EIT Instrument Markets

108 Carpenter Drive Sterling, VA 20164 USA Phone: 703-478-0700

uv@eit.com

www.eit.com

INSTRUMENT MARKETS